Upward elevational shift of the Horned Lark (Eremophila alpestris) in alpine breeding sites at Dovrefjell, central Norway

Authors

  • Oscar Østvold Norwegian University of Life Sciences
  • Svein Dale Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences https://orcid.org/0000-0003-4595-6885
  • Axel Brevig-Edfeldt Norwegian University of Life Sciences

DOI:

https://doi.org/10.15845/on.v47.4180

Keywords:

alpine bird, climate change, Dovrefjell, mountain birds

Abstract

Climate change is expected to force species to move upwards and polewards. Mountain species are at particular risk because upward elevational shifts may be limited by the maximum height of mountain ranges. The Horned Lark Eremophila alpestris breeds in the high mountains of southern Norway. Two previous studies recorded the elevation of breeding territories of Horned Larks in two regions of Dovrefjell, central Norway. In mountains around Grimsdalen (Dovre municipality) territories had a mean elevation of 1329 m (range = 1200–1450 m, n = 15) in 1969, and in mountains around Einunndalen (Folldal and Oppdal municipalities) the mean was 1339 m (range = 1240–1430 m, n = 15) in 1992. The same mountain areas were resurveyed 30–53 years later in 2022. In Grimsdalen, mean elevation of lark territories was now 1426 m (range = 1260–1570 m, n = 23) and in Einunndalen 1415 m (range = 1196–1523 m, n = 42). Overall, the data suggested a mean upward elevational shift of 2.2 m/year. The shift in elevation suggests that climate change has influenced the elevational range of the Horned Lark in the mountains of central Norway, with potential population consequences if the upward shift continues.

References

Archaux F. 2004. Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146: 138–144. doi: 10.1111/j.1474-919X.2004.00246.x.

Bani L, Luppi M, Rocchia E, Dondina O & Orioli V. 2019. Winners and losers: How the elevational range of breeding birds on Alps has varied over the past four decades due to climate and habitat changes. Ecology and Evolution 9: 1289–1305. doi: 10.1002/ece3.4838.

Batllori E, Blanco-Moreno JM, Ninot JM, Gutierrez E & Carrillo E. 2009. Vegetation patterns at the alpine treeline ecotone: the influence of tree cover on abrupt change in species composition of alpine communities. Journal of Vegetation Science 20: 814–825. doi: 10.1111/j.1654-1103.2009.01085.x.

Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R & Schöner W. 2009. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi‐variable analysis. International Journal of Climatology 29: 2197–2225. doi: 10.1002/joc.1857.

Bryn A & Potthoff K. 2018. Elevational treeline and forest line dynamics in Norwegian mountain areas – a review. Landscape Ecology 33: 1225–1245. doi: 10.1007/s10980-018-0670-8.

Byrkjedal I, Fjeldheim VB, Halvorsen LS & Lislevand T. 2022. Diet of three sympatric species of granivorous songbirds in a Norwegian high mountain area during the early breeding season. Ornis Norvegica 45: 16–26. doi: 10.15845/on.v45i0.3639.

Byrkjedal I & Högstedt G. 2022. Numbers of Horned Lark Eremophila alpestris are increasing at high alpine and arctic breeding sites in Norway. Ornis Norvegica 45: 10–15. doi: 10.15845/on.v45i0.3640.

Byrkjedal I & Kålås JA. 2012. Censuses of breeding birds in a South Norwegian arctic-alpine habitat three decades apart show population declines in the most common species. Ornis Norvegica 35: 43–47. doi: 10.15845/on.v35i0.288.

Chamberlain DE, Brambilla M, Caprio E, Pedrini P & Rolando A. 2016a. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia 181: 1139–1150. doi: 10.1007/s00442-016-3637-y.

Chamberlain DE, Pedrini P, Brambilla M, Rolando A & Girardello M. 2016b. Identifying key conservation threats to Alpine birds through expert knowledge. PeerJ 4: e1723. doi: 10.7717/peerj.1723.

Chen I-C, Hill JK, Ohlemüller R, Roy DB & Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024–1026. doi: 10.1126/science.1206432.

Couet J, Marjakangas EL, Santangeli A, Kålås JA, Lindström Å & Lehikoinen A. 2022. Short-lived species move uphill faster under climate change. Oecologia 198: 877–888. doi: 10.1007/s00442-021-05094-4.

Felde VA, Kapfer J & Grytnes J-A. 2012. Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography 35: 922–932. doi: 10.1111/j.1600-0587.2011.07057.x.

Freeman BG, Scholer MN, Ruiz-Gutierrez V & Fitzpatrick JW. 2018. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. PNAS 115: 11982–11987. doi: 10.1073/pnas.1804224115.

Garcia-Navas V, Sattler T, Schmid H & Ozgul A. 2021. Spatial heterogeneity in temporal dynamics of Alpine bird communities along an elevational gradient. Journal of Biogeography 48: 886–902. doi: 10.1111/jbi.14045.

Haftorn S. 1971. Norges Fugler. Universitetsforlaget, Oslo.

Hallman TA, Guelat J, Antoniazza S, Kery M & Sattler T. 2022. Rapid elevational shifts of Switzerland’s avifauna and associated species traits. Ecosphere 13: e4194. DOI: 10.1002/ecs2.4194.

Kerner JM, Krauss J, Maihoff F, Bofinger L & Classen A. 2023. Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants. Ecology 104: e3848. doi: 10.1002/ecy.3848.

Lehikoinen A, Brotons L, Calladine J, Campedelli T, Escandell V, Flousek J, Grueneberg C, Haas F, Harris S, Herrando S, et al. 2019. Declining population trends of European mountain birds. Global Change Biology 25: 577–588. doi: 10.1111/gcb.14522.

Lehikoinen A, Green M, Husby M, Kålås JA & Lindström Å. 2014. Common montane birds are declining in northern Europe. Journal of Avian Biology 45: 3–14. doi: 10.1111/j.1600-048X.2013.00177.x.

Lien L, Østbye E, Hogstad O, Haande KM, Haande PS, Hagen A, Skar H-J, Skartveit A & Svalastog D. 1974. Bird surveys in the high mountain habitats of Finse and Stigstuv, Hardangervidda, South Norway, 1967-1972. Norwegian Journal of Zoology 22: 1–14.

Maggini R, Lehmann A, Kéry M, Schmid H, Beniston M, Jenni L & Zbinden N. 2011. Are Swiss birds tracking climate change?: Detecting elevational shifts using response curve shapes. Ecological Modelling 222: 21–32. doi: 10.1016/j.ecolmodel.2010.09.010.

Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PSA, et al. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10: 106–117. doi: 10.1038/s41558-019-0688-1.

Nicklas L, Walde J, Wipf S, Lamprecht A, Mallaun M, Rixen C, Steinbauer K, Theurillat JP, Unterluggauer P, Vittoz P, et al. 2021. Climate change affects vegetation differently on siliceous and calcareous summits of the European Alps. Frontiers in Ecology and Evolution 9: 642309. doi: 10.3389/fevo.2021.642309.

Parmesan C & Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. doi: 10.1038/nature01286.

Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, et al. 2012. Recent plant diversity changes on Europe’s mountain summits. Science 336: 353–355. doi: 10.1126/science.1219033.

Pernollet CA, Korner-Nievergelt F & Jenni L. 2015. Regional changes in the elevational distribution of the Alpine Rock Ptarmigan Lagopus muta helvetica in Switzerland. Ibis 157: 823–836. doi: 10.1111/ibi.12298.

Popy S, Bordignon L & Prodon R. 2010. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. Journal of Biogeography 37: 57–67. doi: 10.1111/j.1365-2699.2009.02197.x.

R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.

Rumpf SB, Gravey M, Bronnimann O, Luoto M, Cianfrani C, Mariethoz G & Guisan A. 2022. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 376: 1119–1122. doi: 10.1126/science.abn6697.

Scridel D, Brambilla M, Martin K, Lehikoinen A, Iemma A, Matteo A, Jähnig S, Caprio E, Bogliani G, Pedrini P, et al. 2018. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160: 489–515. doi: 10.1111/ibi.12585.

Şekercioğlu ÇH, Schneider SH, Fay JP & Loarie SR. 2008. Climate change, elevational range shifts, and bird extinctions. Conservation Biology 22: 140–150. doi: 10.1111/j.1523-1739.2007.00852.x.

Shah AA, Dillon ME, Hotaling S & Woods HA. 2020. High elevation insect communities face shifting ecological and evolutionary landscapes. Current Opinion in Insect Science 41: 1–6. doi: 10.1016/j.cois.2020.04.002.

Spjøtvoll Ø. 1970. Fjellerke i Rondane- og Dovrefjellområdet – og litt om dens forplantningsbiologi. Sterna 9: 163–174.

Stueflotten, S. 1994. Fjellerke Eremophila alpestris. Pp. 318–319 in: Gjershaug JO, Thingstad PG, Eldøy S & Byrkjeland S (Eds) Norsk fugleatlas. Norsk Ornitologisk Forening, Klæbu. (In Norwegian)

Svendsen RS. 1997. Fjellerkeobservasjoner fra Einunndalen. Rapport til den lokale rapport- og sjeldenhetskomitéen (LRSK) i Norsk ornitologisk forening avd. Hedmark. (In Norwegian)

Theurillat J-P & Guisan A. 2001. Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change 50: 77–109. doi: 10.1023/A:1010632015572.

Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, et al. 2004. Extinction risk from climate change. Nature 427: 145–148. doi: 10.1038/nature02121.

Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H, Hassel K, Lindmo S, Kapás RE & De Frenne P. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research 32: 579–593. doi: 10.1007/s11284-017-1472-1.

Vitasse Y, Ursenbacher S, Klein G, Bohnenstengel T, Chittaro Y, Delestrade A, Monnerat C, Rebetez M, Rixen C, Strebel N, et al. 2021. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biological Reviews 96: 1816–1835. doi: 10.1111/brv.12727.

Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O & Bairlein F. 2002. Ecological responses to recent climate change. Nature 416: 389–395. doi: 10.1038/416389a.

WWF. 2022. Living Planet Report 2022 – Building a nature- positive society. Almond, R. E. A., Grooten, M., Juffe Bignoli, D. & Petersen, T. (eds). WWF, Gland, Switzerland.

Øien IJ, Stokke BG & Kålås JA. 2023. Det går litt bedre for fjellfuglene, men det blir stadig lengre mellom fuglene i jordbrukslandskapet - borte som hjemme. Vår Fuglefauna 46: 12–19. (In Norwegian)

Østbye E & Framstad E. 1987. Spurvefuglenes habitatbruk i høyfjellet. Viltrapport 43: 104–110. (In Norwegian)

Horned Lark. Photo: Oscar Østvold.

Downloads

Published

2024-12-20

How to Cite

Østvold, O., Dale, S., & Brevig-Edfeldt, A. (2024). Upward elevational shift of the Horned Lark (Eremophila alpestris) in alpine breeding sites at Dovrefjell, central Norway . Ornis Norvegica, 47, 50–57. https://doi.org/10.15845/on.v47.4180

Issue

Section

Articles