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For the question of  relations between architecture, or more generally, design, and math, there seems 
to be two schools. As a great light on Roman buildings told me, Borromini’s architecture has 
nothing to do with math. On the other hand, for some of  us, it is hard to see how you can bypass 
the issue; especially if  you look at the field as something more than just numerical calculation. 
One might, as Giordano Bruno did, argue in terms of  interrelated magnitudes (SL, Patterns and 
Programs, 1.4) without codifying anything in numerical or any other formal math format. The 
main point in the present discussion is that, while architecture and design taken as whole is at least 
physically attestable, math does not appear always as numbers and on paper or on the machine, 
but may be an active configuration in the murky depths usually referred to as our mind, without 
being necessarily explicitly recorded.

1. Elusive issues
Given the indeterminate definitory status of  both math and architecture - or, more 
generally: design, the option left us is operational determination; it is our handling an 
object that gives it a managable identity (above the levels of  trivia; SL, Burden, 
Patterns and Programs, and Bridgman). In the present context, this seems to open 
up a twofold line of  argumentation. The first part goes by two steps. We start 
out with considering math operations, whether explicit or implicit or potential, 
and dimensionally scalar, vectorial, differential or integral, or topological. Then 
we ask what kind of  numerical, geometrical or symbolic manipulations can be 
appplied to design, or lies there already, explicitly or by implication. Whenever the 
shape can be subjected to math operations or seems to invite math thinking, what 
sort of  procedures, and what kind of  cognitive, conceptual and situational or 
environmental frameworks, can a visual shape call up by virtue of  its essential form 
(a term to be considered presently) ? The next step concerns the implications of  
evaluating these issues together, as a pattern of  reciprocal interaction.

The problem picture just outlined is not a static one but shows a process 
or processes, eluding definite solutions. Some formats can advantagously be 
analysed in metaphorical terms on an information model (SL, Patterns and programs, 4.3.5, 
using material from Davis and Olson; see also Inmon). 
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So my program aims at nothing more than approaching the probable 
terms of  a framework analysis. What is the methodological significance of  such 
an agenda, how are we to recognize and describe it (I am going to speak of  describe 
and description, to cover also cognitive awareness, epistemological access and 
recognition)? The matter is further involved by the circumstance that math, and 
not only geometry, can call forth pictures or visual models; a contingency that is of  
course much dependent on specific properties. Visualizing in general depends on 
environmental factors and individual attitudes, inclinations and competences. But 
images, mental or visual, have often guided enterprises in science and thus also in 
math (see Holton’s and Miller’s publications cited in the Bibliography). According to 
Werner Heisenberg, Niels Bohr, regarding his atom model with its planetary orbits,

believed in his pictures of  the atom, less in his own hypothesis about the atomic reality 
behind them (Es ist also gar nicht so sicher, daß Bohr selbst an die Elektronenbahnen 
im Atom glaubt. Aber er ist von der Richtigkeit seiner Bilder überzeugt) (Heisenberg, 
1996, 49).

On several levels of  abstraction, math and imagery, mental or visual, geometrical, 
topological or otherwise, interact, dovetail or mutually intefere with one another. 
It may seem relevant to presume that our deep-set faculty of  pictorialization 
forms a link between math and the experience of  visual shapes such as design. 
Wittgenstein, in his Bemerkungen über die Grundlagen der Mathematik, another of  his 
collections of  propositions, offers some considerations in support of  this idea . 
He is, of  course, one would say, aware of  the human dimensions accompanying 
work in and with math. Numbers are, conceptually speaking, figures/images, and 
arithmetics informs us about their properties. But the difficulty lies in the fact, 
that the properties represent possibilities. Die Zahlen sind Gestalten (ich meine nicht die 
Zahlzeichen) und die Arithmetik teilt uns die Eigenschaften dieser Gestalten mit. Aber die 
Schwierigkeit ist da, daß diese Eigenschaften der Gestalten M ö g l i c h k e i t e n sind. Und 
diese Möglichkeiten wieder entpuppen sich als physikalische, oder psychologische, Möglichkeiten...
etc. (Wittgenstein, 229f.).

Without venturing to elaborate Wittgenstein’s point any more than this, it 
seems advisable to be aware that much math calls forth imagery, and once this has 
happened, one is left roaming in the fuzzy landscape into which pictures generally 
seem take us (SL, Burden).

The process is not reversible, for a picture and the words describing it (on 
paper or in our brain; often not the same, it would appear), do not point unequivocally 
back to the number group. In fact, both these media are indeterminate and indefinite 
with respect to their reference downpour zone. Grasping their import will have 
us fanning out over a wide configuration space. The famous idea of  falsification 
(due mainly to Popper ) can be applied only to numbers handled in regular math 
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procedures, isolated, to the extent possible, from the environment. This should 
mean that propositions in verbal terms cannot be either proved or rejected, except 
by other verbal expressions: the blind leading the blind.

2 Shape and form
A design object must be - and normally will be - subjected to a two-level approach, 
regarding what we can se directly and what we seem to sense behind it or inside it. 
Seeing a cupola, we may feel that there is some basic notion or form determining its 
base curve, a pure circle, and at school we learn that it means x2 + y2 = r2. A similar 
event can occur when considering tilings and patterns (Grünbaum and Shephard).

Lord and Wilson, in their indispensable book, The mathematical description 
of  shape and form, make a distinction which is relevant for the present discussion. 
We have chosen the word shape to indicate those aspects of  geometrical form which have to do 
with the external aspect that an object presents to the world. The word form has been reserved to 
indicate that some aspects of  internal structure is also under consideration (from the Preface). 
Elsewhere I have developed the distinction between system and elaboration when 
discussing pictiorial programs based on a recordable and well-defined canonical 
system (SL, Patterns and programs, 1.6, 1.6.1). In the humanities as in the sciences, one 
should respect the difference between independent and dependent variables; even 
though the former in this environment will always be a matter of  (non-statistical) 
probability or heuristics.

We seem to be justifed in focusing on the conceptual side, which also, 
indeed, includes the technical and mathematical aspects. Characteristically, 
Gregory’s book, Mind in Science. A History of  Explanations in Psychology and Physics, in 
his very extensive treatment of  machinery, focuses constantly on the conceptual 
functions.

To say this may sound like laboring the obvious, but further enquiry 
will show that the idea of  concept is tricky enough to require closer inspection (see 
Putnam for conceptions as a question of  abilities rather than properties). For there 
is also the concomitant aspect that this way of  reasoning bridges over to non-
common sense design environments, in computer science, in the virtual world 
and mathematization of  concept lattices (Ganter and Wille). This should mean 
that the impact of  math operations on design must involve also some software 
environments.

3. A prototype case
To lend some more substance to the above points, which touch directly on the 
distinction shape/form, let us have a look at a sculpture that, with its complex 
structure of  simple forms and with its exposure to public view, shows essential 
characteristics of  buildings: Eduardo Chillida’s block sculpture. 
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Fig. 1. Eduardo Chillida, Sculpture (Coll. Maeght, St.-Paul-de-Vence). Phot. Liv Sinding-
Larsen.

Simple and composite blocks are bounded by roughly rectangular surfaces that are 
dovetailed into one another in a pattern which seems to defy direct observation; at 
least so to many of  us. For some of  us, again, from observation of  this complex 
shape an expectation may arise to find so to speak inside the configuration some 
plainly Euclidean squares and rectangles bounding separate simple geometrical 
figures in unspecified spatial juxtaposition, in other words, a set of  forms. This is 
the kind of  dynamic tension which architects and artists, for example Matisse and 
the German expresionists, exploited. In handling some system such as we find in 
Chillida’s sculpture, we are moving innside the domain of  math ideas.

4. Proportions and ideologies
Now let us consider some deceptively simple cases of  math application. Recording 
the dimensions of  the fourteenth-century Florentine constructions of  door 
and window arches (SL, 1975), a relatively plain proportional formula emerges 
(computerized documentation), by which the craftsmen could construct the arches 
and their frames. Simple “recipe” patterns as these were common in Europe, and, 
according to Paul Booz (in his Die Baumeister der Gothik); served statical as well 
as formal purposes (see below). These simple data should not be evaluated in 
isolation but have to be integrated in a large and meaningful system. As they are 
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the prominent decoration element on the public and governmental buildings as well 
as those of  the upper class of  merchants and bankiers, the design features became 
symbolic of  the sophisticated financial and math culture in the city, but also of  the 
political role of  the cited class, which - usually through the guilds, represented the 
constitutional element of  the Florentine state. At the same time, the geometrical order 
supported and confirmed the tradition of  a city and state which considered itself  an 
instantiation of  the heritage from ancient Rome (details in SL, 1975). If  we started 
out from any one of  these features (here sketchily conveyed), the path along which 
we might be led back to the arches and their math expressions is just one among 
numerous alternatives.

In this way, a number applied to a design object is absorbed into it by being 
processed in the composite image with which it presents itself  to the world. Hence, 
speaking of  number applied to design, we have left the range of  math, making the 
number resurface in the composite and indeterminate design terms. Measuring the 
height of  a wall, we are no longer concerned with numbers but with the wall. This 
little example of  a model can be extrapolated to larger or more complex issues. Math 
ideas or descriptions can be expressed verbally, the speaker (or writer) not necessarily 
being aware of  the numerical equivalent(s) or potentials. Palladio’s Quattro libri may 
be cited as referring to at least one case in which the approximation issue arises, even 
though he does not say so. In a book tightly packed with measurements - there are 
numbers all over his drawings, one case is treated verbally in default of  a numerical 
method. One of  his ancient vaults in Libro Primo is a volto tondo. Here, we are told 
(more to the point: his customers, present and prospective, are told, for the architect’s 
treatises were sales catalogs): ... the curve of  the vault, the closer it approaches the corners, the 
rounder it becomes (quanto più s’approssima à gli angoli; tanto più diuenta ritondo). One may risk 
the guess here that Palladio would have desired to express this variable “roundness” 
in a number format. His clients, many of  whom were business men, would have felt 
even safer if  he had been able to do that. But the required math tools were not as yet 
available. Giordano Bruno, working with general theory, unhampered by das Unbehagen 
der Kultur, could opt for a more direct way, to show the argument in a graphic model 
(Patterns and programs, 1,4).

5. Borromini’s differential curves and manifolds.
The next group of  cases is much more complex. Francesco Borromini introduced 
curves and surfaces in his buildings which defied contemporary math, while at the 
same time they represented forms, behind their shapes, that did belong to the formal 
register which the efforts toward the mature calculus in the initial phase were committed to 
handle (details in my Patterns and programs). 

The most notable architectural case is the transition from wall to cupola in 
the interior of  Sant’Ivo (Fig. 2. For the details, see SL, Patterns, 1.5 ff. ).

Here, there is a passage from convex wall sections upwards into the cupola, 
where the surface necessarily assumes concavity. In this fashion, a convex surface is 
turning continuously, that is, differentially, into a concave one.
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Fig. 2. Sant’Ivo, interior; transition from main body up to the cupola, from convex to concave (in 
Norwegian but hardly difficult).

There are many equally challenging shapes in Borromini’s renovation and partial 
rebuilding of  the Cathedral of  Rome, San Giovanni in Laterano; let me cite one 
of  them. On the frame that Borromini designed for an earlier funerary monument 
to be reinstalled in the partly renovated church (also the work of  Borromini), the 
monument for Cardinal Giulio Acquaviva (Fig. 3), the horizontal element that classically 
would have been an architrave parallell to the wall system, is bent inwardly so as 
to convey the impression of  an inverted perspective. In fact, the pseudo-architrave 
may be described as a relatively close approximation to a projection onto a vertical 
plane of  a cosine curve between 0 and 2π. The element, however, is not closed in 
one plane, for the trough is gradually bent inwards starting from the end points, the 
lateral crests, so that it deflects from the vertical front plane to a plane at some 15 
degrees to that. Thus the architrave represents a spatial shape of  high complexity.
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Fig 3 , San Giovanni in Laterano, Funerary monument for Cardinal Acquaviva.

Curves of  this kind may be labeled differential curves (rather than indefinite, as with 
Anthony Blunt), for the implication is then that some kind of  differential, as was being 
developed at the time, was required for handling them (Patterns, 3.4 and Subsections). In 
fact, some of  the curves and surfaces to be fully manageable, would require differ-
ential geometry, a method not available at the time.

When I speak of  differential curves, they should be understood as being em-
bedded in manifold configurations, as the “ovary” shapes in San Carlino, which must 
be understood in connection with the complex wall structure. Glenn and Littler’s 
Dictionary of  mathematics gives the following description (rather than definition) of  
manifolds: Any entity constructed from a number of  enities usually infinite, as a three-dimensional 
manifold constructed of  all points with coordinates x, y, z. This is thus an operational pro-
cedure rather than a definitory one regarding meaning or significance, telling us 
how a manifold comes into existence. Taken at the outline level, without entering 
into the math details, it should be applicable to all architectural forms in curved 
surfaces regardless of  their physical boundaries. Borromini lets us go away without 
a usable vocabulary or nomenclature except mathematics; even that problematic, 
seeing that many of  his forms were at best approachable in terms of  a vast array of  
experimentation with some point-wise direct hits, in a branch of  contemporary 
mathematics which I label protocalculus (the main subject of  my Patterns and programs 
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Fig. 4. Rome, Sant’Ivo alla Sapienza, spire seen from the present Via del Teatro Valle.
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in premodern Rome). The Spire on Francesco Borromini’s university church Sant’Ivo alla Sa-
pienza in Rome consists essentially of  a conical helix with increasing torsion, i.e., the curve 
getting steeper as it ascends.

The Spire is constructed in travertine with details in stucco and metal. 
The helical shape is made liturgically relevant by means of  a register of  religious 
symbols and images, all of  which are standard items in Roman Catholic church 
contexts - and need not occupy us further here (listed in SL, Burden, 75f.).

Speaking of  construction, I do not have in mind the work in masonry 
and travertine but the abstract configurations that may have been guiding the 
workmanskip (for a tentative reconstruction of  this, see SL, Patterns and programs, 
1.9.1). The story supported by documents and reconstructions, is quickly told. 
Because of  the small horizontal area to be occupied by Sant’Ivo (on account of  
the dimensions of  the Sapienza building and the street pattern there), a cupola on 
top of  it would have to be too low to mark off  the place on the Roman skyline, 
with all its paraboloid domes, and too inconspicuous to set off  against the many 
other churches the prestigious building of  the Papal University. Some kind of  spire 
or guglia was the only option available. A few blocks away there was (and is) the 
triumphal column of  Marcus Antonius, the philosopher emperor, with its helix 
running all the way up the trunk. A new inscription set on its base by Sixtus V (who 
initiated the Sapienza building) calls it a cochlea (a word of  Greek origin meaning 
snail, implicitly also: shell). This name is applied also to the helical Spire.

The world was full of  helical shapes but rarely with an increasing torsion.Such 
a helix, especially a conical one as here, lay far beyond the grasp of  contemporary 
math. Albrecht Dürer had published a drawing to show how a conical helix with 
increasing torsion could be constructed by raising up numbered verticals from a 
spiral (a flat curve); but this is constructed not in generative math but by setting up 
a series of  definite points (Sl, Patterns and programs, 1.9). 

 Today, a general helical curve, in which the torsion and curvature may be variable, 
is measured in terms of  a so-called position vector (Lord and Wilson, 19ff.) 
This concept and the corresponding technique in differential geometry were not 
available at the time. It should be noted here, that both Dürer and Torricelli, like 
everyone else in pre-modern math, also in the protocalculus efforts before the time 
of  Leibniz and Newton, used exclusively geometrical proportions without number 
calculations, for their configurations. Once erected, the peculiar shape dominated 
the view not only from the local streets, but even from many far-away points in the 
city (the Campidoglio, for instance).

To conclude, the torsion increase, which at the time must have been noted as 
its most challenging feature, was the result of  the building process; it is not determined 
by the basic spiral (to judge from the drawing published by Joseph Connors; see 
SL, Patterns and programs, 1.9 ). On account of  this striking feature, the Spire no 
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longer belongs to the category Galilei considered as normal curves (linee semplici) and 
the crucial element of  a helix. The Spire now is merged into the class of  differential 
forms encountered in Borromini’s buildings and elsewhere (SL, Patterns and programs 
2.2.9). The shapes containing such forms would function as undirected attractors with 
regard to people receptive to them, in this way intensifying the attempts to cope 
with complexities. An amanuensis at the very Sapienza university, Galilei’s pupil 
Evangelista Torricelli, worked out the volumetrics of  a cylindrical helix, causing even 
the French to praise him for it (SL, Patterns and programs, 3.2.1); so the idea was in 
the air.

The design must have challenged math experts and interested people at 
the university and in its entourage. Math did not belong to the natural sciences, 
and a show of  modernity on the church of  the papal university would not call up 
embarrassing cosmological conundrums (especially after the scandalous canonical 
rejection of  Galilei’s observations in 1616). The math factor if  evoked would 
therefore have been cherished by the Church, Patrons of  the university without 
fear of  involvement in the cosmological disputes of  the day: a harmles sign on a 
troubled sky. That is to say, math becomes an ideological and political factor; related 
to this, math can serve as a pledge for correctnes and validity of  design: finally, some 
people will embody math considerations in their attention and reactions without 
even noticing it, simply bypassing the intermediate steps in a piece of  reasonng, a 
case of  expertise in Hubert Dreyfus’ analysis (SL, Burden, IV, 2.1 and 9.1).

6. Grapevine
A crucial issue arising from our present concern with the relation between math 
and design is to what extent such conceptual connections would be directly or 
indirectly present in the minds of  contemporaries with a minimum of  awareness and 
knowledge. The question of  people’s reactions and the working of  their “minds” 
cannot be formulated in any general and analytically reliable terms (Baumgartner 
and Payr, Benjafield, Callero). The planner outfit and the authorities accepting the 
Spire idea, will have predicted such reactions on the different levels of  contemporary 
people using the normal combination of  normative and explorative prediction (SL, 
Patterns and programs, 3.1 on Idea generation and planning process). We could set up 
a probability pseudo-matrix of  the range, arguing in the following terms (as I have 
in fact attempted in SL, Patterns and programs). There must have been talk all around 
at the Sapienza, the normal community grapevine taking care of  that. People directly 
or indirectly involved came mainly in the following categories: the mathematicians 
and other math-oriented scholars, the higher clergy, the university scholars in general 
and, connected with these various categories, circles of  men with a higher education 
who would, to varying degrees, share acquaintance with the scientific aspects of  the helical 
form. In this manner a distribution of  competences across the groups would arise.

The kernel of  the argumentation concerning the helical thread running up 
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the whole shape, is that people with some degree of  preparation and awareness 
of  contemporary debates, would see the curve as representing some of  the 
fashionable, hotly discussed, and highly problematic issues in European scholarship 
in the seventeenth century (carefully introduced in Patterns and programs).

7. Math and design
The presence of  math, in one form or the other, offers no decisive help in the 
development of  definitions either of  architecture nor of  design. Math, as a an area 
of  operations, is not easily defined, as Quine pointed out: In Whitehead and Russell’s 
Principia Mathematica we have good evidence that all mathematics is translatable into logic. But 
this calls for elucidation of  three terms: translation, mathematics and logic (Quine, 1980, 80).
 Not even categorizations within math are always helpful; thus Eves:. 
It must be confessed that the classification of  bodies of  mathematics into the three categories 
of  geometry, algebra, and analysis is largely based on more or less sentimental and traditional 
grounds, and that the boundaries between the categories are becoming less and less well defined [the 
position of  topology thus remains problematic].
Nevertheless,... most branches of  mathematics have ultimate parenthood in either Euclidean 
geometry, symbolized arithmetic, or the limit processes of  the calculus (Eves, 173f.). 
Furthermore, there exist, undoubtedly, more than one normal system whose use as a logic is 
feasible, and of  these systems one may be more pleasing or more convenient than another, but 
it cannot be said that one is right and the other wrong (Alonzo Church cited by Eves, 
258f.). Lakoff  and Núñez offer a matrix for a portrait of  mathematics; somewhat 
excessively colored by adjectives like human, greatest, extraordinary, and by rather 
literary argumentation (Lakoff  and Núñez, 377ff.).

We are no better off  concerning architecture and design. Design, along with 
architecture, has gained some respectability in engineering and in the relatively new 
digitial world; as the concept of  design is worked out in Winograd’s (and others’) 
Bringing design to software, of  1996, at its 11th printing in 2006. A more comprehensive, 
functionally structured and dynamic sense of  design is given by Herbert Simon in 
his The sciences of  the artificial (Chapter 5, 111ff.). I take it that he has arrived at 
this concept under the impact of  two other of  his important theories, on the one 
side, problem solving, and on the other, planning. In this perspective, most human 
products, mental and physical, can be subsumed and analysed under the model of  
design procedures. Remaining satisficed (in Simon’s term) with everyday notions of  
both kinds of  construction or building structure, we can use - not mathematics but 
distinctive math operations on them to see what happens.

One problem here is that design is the outcome and reflection of  a planning 
and production process (details in SL, Patterns and programs, 3.1). Karsten Jakobsen, 
formerly Rector at The Norwegian Institute of  technology, speaking of  recursive 
product development, concludes in the following terms (his “five steps” not to be 
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taken literally in our context): The process of  product development is a recursive process 
in the sense that a fivestep procedure calls upon itself  as the different levels of  the product to be 
designed are uncovered as “chinese boxes”. Thus the functional tree cannot be completely specified 
at the beginning of  the product development process, but must be developed gradually as each level 
is uncovered, and the process of  determination of  functional requirements (or rather requirement 
specifications) and of  creative thinking (solution generation) are progressing stepwise parallel as a 
dualism, rather than as a two-step sequence. (Jakobsen, 53). If  so, it becomes hard to state 
what the product really is. This is not a logically stepwise process toward a prefigured 
goal, solution or result, but a non-linear one by virtue of  which the vision or the 
definition of  the expected end result is being construed bit by bit. Anything more 
complex that just nuts and bolts would be affected by this fuzziness.

The purport of  math operations is not always transparent. Lakoff  and 
Nuñez give us a useful reminder. Many of  the confusions, enigmas and seeming paradoxes of  
mathematics arise because conceptual metaphors that are part of  mathematics are not recognized 
as metaphors but are taken as literal (Lakoff  and Nuñez, 6).

8. Math operations
Let me repeat: analyzing retrospectively, we will hope to cover the essential 
ingredients and processes involved also in planning, which consists of  a preview of  
the potentials, role and effects of  the finished product and consequent prediction. 
Herbert Simon has often insisted on the role of  “hindsight” in learning, planning 
and prediction, and on recursive processes (e. g. in Simon, 1979), to the extent that 
prediction works backwards. 

When someone among our historical protagonists approached the subject 
of  handling design complexities mathematically or, indeed, took up important 
features in its episthemological setup, this may have happened in (at least) one of  
six kinds of  operation (or some or all of  them): 
(1) Working with and/or within the math technique at issue and applying it to the 
design object; scalar measuring of  physical dimensions, resistence and weight, also 
proportions between elements (such as proportional systems for embellishments 
or for technical control; as noted by Paul Booz in his Die Baumeister der Gothik; or in 
Palladio’s Quattro libri in which the which the buildings represented in the drawings 
are completely documented with measurements and proportional relations).
(2) working with other topics which from a cognitive perspective were to prove 
representative of  or “emblematic” for the development of  math application to 
design, such as non-Euclidean curves, surfaces and volumes (e.g. such as those that 
I call differential, in works e.g. by Borromini; SL, Patterns and programs). 
(3) working with some object in the shape format that seems to involve, for some 
people, not necessarily the creator her/himself, underlying form properties; such as 
approximate geometries or stereometries (like Chillida’s sculpture).
(4) being somehow concerned with the object and accessing, even accepting 
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certain characteristics or features in it, without reflecting on the math ingredients 
indispensable for the object’s functioning, a jumping-over several implied steps by 
virtue of  one’s expertise (in Hubert Dreyfus’ well-known conception of  expertise; 
SL, Patterns and programs, 4.3.6); a common occurence.
(5) working with shapes that have a potentially clear math form while the designer 
does not consider it, is unaware of  it, or is unable to handle it except by “verbal 
framing-in”; Palladio describing a curve becoming “more rounded”, which the
then incipient protocaculus (a term in SL, Patterns and programs) would have
formalized, at least to some degree.
(6) “Reinterpreting” a flat wall or other neutral surface by means of  pictorial 
decorations that introduce math proportions and shapes (as in Storstein’s frescos 
in Oslo Townhall; see Åse Ødegaard’s publication in Norwegian: Et kunstverk blir 
til - The generation of  a work of  art, Trondheim 2000).

The questiom is not only which math operations we study or our analysis 
protagonists employed, but what sort of  concepts might accompany the operations 
and which of  them we try to reconstruct with our models. 

There is a vast literature, going back to the early middle ages in Europe, 
which discussed either the application of  numbers to artifacts or geometrical 
visions and configurations applied to them. We have a deceptively simple example 
in the medieval idas of  “meaningful” numbers (twelve columns for the twelve 
Apostles, etc.). Math operations or more or less conscious math thinking, are 
rarely unaccompanied by ideological, symbolic or traditional concept, directly or 
contextually manifest. It would be inadequate to study how the Florentine in the 
fourteenth century designed their arches on doors and windows without taking 
into account the power and prestige of  calculation (right back to Fibonacci’s Liber 
abaci of  1205) in the business-oriented culture of  that city (SL, 1975). Palladio’s 
Quattro libri of  1570 abounds in drawings of  buildings of  his own invention and 
from classical Rome, and every detail bears a number: records or instructions 
for new projects, yes; but also operators informing historians and clients about 
the historical backing for the proportions, and the ideological and hence often 
commercial values invested in them.

In the builders’ decisions on proportions in a building, their selection of  
reference points in the edifice - is not unproblematic and may reveal something 
about conceptions and priorities, especially if  rituals are involved. The application 
of  the Golden Section (very frequent) could be looked upon either as a natural, 
almost in-born, method of  achieving order, or as a math expression valued just as 
such. 

Math operations, especially on things in the world, seldom if  ever come 
“alone” or “pure”. Doing math can probably occur in isolation when one is training 
on some specific operations, or teaching them, or evaluating them with respect to 
manifestations of  truth value (T/F) or, in Kline’s words, loss of  certainty. In the 
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study of  larger systems, however, the operations we are performing or studying will 
arise in the framework of  other more or less related math operations or, indeed, 
in networks of  external concepts and processes. The issue will then, normally, be 
loaded with ideological baggage outside of  the normally recognized pale of  math 
operations or even thinking (a Supplement on conceptualization follows at the 
end of  this paper). Such a “baggage” will enter the game from one or both of  two 
quarters: by use procedures, such as applying the operations to design, technically 
or technologically speaking, or by metaphorical or other associational processes. 
such as historical references to Roman classical proportions.

The digital paradigmas and also their metaphorical replication have 
almost always strong capacities for absorbing math statements and operations and 
also for handling them conceptually, in model format if  not directly. The amount 
of  contributions to what with perhaps unjustified simplification I call the digital 
environment, is enormous. So I shall just cite a few characteristic examples, avoiding 
the more speculative ones, as they occur in the literature (see the Bibliography): 
Winograd on Bringing design to software; Bratko on Prolog (ubiquitous recall of  
conceptualization models); Ganter and Wille on formal concept analysis; Truss with 
a survey of  computer math; the Kirsch volume on the foundations of  AI; Bechtel and 
Abrahamsen on connectionism; Gregory’s book on Mind in Science; the Miller volumes 
on the role and functions of  imagery in science; and the great overview in Levine and 
Rheingold, The cognitive connection. Thought and language in man and machine; Horgan’s 
Undiscovered mind. 

Math applied to architecture, or design generally speaking, should be 
considered as a recording or an instruction concerning metrics and the technical 
aspects, but also a statement about the subject. The ubiquitous numbers on Palladio’s 
drawing in his Quattro libri (1570) certainly pretend to show how to construct 
correctly but at the same time to furnish his old and his prospective clients (SL. 
Patterns, 1.5.2) with ideological significance for their buildings. Serlio in his book 
(1548) presents a great choice of  designs to choose from if  one wants to build 
“classically”: a Sears and Roebuck sales catalog avant la lettre (SL, 1978, section 
The selling of  an idea). Written statements by the architects themselves were also 
written with some purpose not always stated: in support of  personal prestige and 
of  marketing the design ideas and prototypes. Especially after the architects had 
become “humanists”, some authorship was expected from them, and they had to 
play the role as “learned” men, demonstrating their status with comments at least 
as a garnishing on cakes already out of  the oven. In some sense math applications 
can be compared to written statements about the matter on hand. For this Roy 
T. Eriksen’s expert analyses of  architectural writings should be consulted (two 
examples: Eriksen 2004 and 2006).

Mathematics applied to buildings, then, should be evaluated both for the 
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use to which it is being put, but also for its role in stating something about the shapes 
and forms. Are these clear alternatives? No. Regarding the divide between use and 
mention, the meta issue in Nagel and Newman’s stimulating booklet on Gödel’s Proof. 
I seem to remember that Douglas Hofstadter somewhere (in his Gödel, Escher, Bach, 
or his more recent book about himself  as a Strange loop), affirmed that a statement 
about number theory is number theory, so that the dichotomy vanishes behind converging 
functions. It may seem tempting, then, to say that any verbal or math statement 
applied to design plays this double role.

9 Generative analysis
The heuristic or experimental theory directing my work, is that the analysis process, 
which is the method, the formulation and implementation of  smaller or bigger 
relevant projects, produces the object on hand (historical or contemporary) and sends it 
back to us more or less ready for analytical use (SL, Burden, 184ff.). I have already 
introduced the paradigm under the name of  Operational determination. This is achieved 
by attributing probable values to the situations and contexts considered relevant, 
attributions in their turn supported by sub-theories. The idea is not an original 
one. In support, I may cite Philip Kitcher in his The nature of  mathematical knowledge. 
Kitcher discusses the case of  a small child playing with blocks on the floor, thus 
learning the meanings of  ‘set’, ‘number’, ‘addition’ and to accept basic truths of  arithmetic by 
engangng in activities in collecting and segregating. Rather than interpreting these activities as 
an avenue to knowledge of  abstract objects, we can think of  the rudimentary arithmetical truths 
as true in virtue of  the operations themselves. On this basis, Kitcher argues that arithmetic 
describes those structural features of  the world in virtue of  which we are able to segregate and 
recombine objects: the operations of  segregation and recombination bring about the manifestation 
of  underlying dispositional traits (Kitcher, 107f.).

Obviously, such a “determination” is - to repeat - a process and rarely a 
final decision. This program affects the relationship between design and mathematics 
in the sense that applying math to some shape, involves more than just the calcula-
tory, technical and dimensional issues, for the handling unavoidably calls forth and 
activizes not only features in our mental baggage but also situational and environ-
mental ones. Working out an issue in a systems mode, if  adequately struc-tured, can 
obviate the need for “explanations” of  a causal nature, since, as Radnitzsy notes, 
explanation is a by-product of  systemization (Radnitzky, II, 102). Furthermore, opera-
tional determination is a process in which decisions on defining stages are arbitrary, 
so that no stage can be considered terminal except for motivations of  convenience. 
No final dénouement.

Staale Sinding-Larsen
Emeritus, NTNU
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